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SUMMARY

Assuming a constant circulation, rigid, trailing

wake and using a lift deficiency function to represent the

unsteady aerodynamic effects, various methods of calculating

the airloads on a helicopter rotor in steady, forward flight

were developed for the purpose of achieving: (a) faster

solution times for a given level of accuracy and (b) a more

accurate representation of the lifting surface/vortex inter-

actibn for the case where the blade passes close to the vortex

line generated by a previous blade. Since most of the solution

time is required to calculate the induced velocities due to

the trailing wake, various approximate methods of calculating

the induced velocities due to a rigid, skewed helix were

developed. Within the limits of accuracy available from the

rigid wake model either the solution of Reference (2), which

represents the skewed helix with a series of infinite straight

lines placed tangent to the helix whenever the helix passes

under a blade, or the finite straight line solution, which

represents the helix with a series of straight line segments

subtending equal A (change in azimuth angle), using = 300 -

400 were found to give the fastest results. If the model is

refined to include, for example, a nonrigid wake, then the

finite straight line solution with a A of approximately

150 should be used. The use of a conventional two dimensional

lifting surface theory was tried for the lifting surface/

vortex interaction case and little improvement resulted. It

is recommended that the use of more sophisticated lifting

surface theories be investigated for this case.
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SYMBOLS

A - coefficients of chordwise induced velocity distribution.n

P = nondimensional induced velocity.

P = location of an element of vorticity in the trailing

wake.

P = point on the blade at which induced velocity is cal-

culated.

R = rotor radius.

TPP = tip path plane.

V = velocity perpendicular to blade in TPP.

W = W*/ ( ) nondimensional induced velocity due to a
vortex segment.

W* = induced velocity due to a vortex segment.

W = Wn.

a, b = vectors from P to the ends of the vortex segment.I
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a = ero' th

zero harmonic of flapping.

b = blade semichord.

c = a-b.

d = nondimensional distance travelled by the rotor hub

between t1  and t

h = h*/R.

h* = perpendicular distance from P to the vortex segment.

i, j, k = unit vectors in x, y, z directions (see Figure 24).

= nondimensional radial distance from the rotor hub

to P, (part A)

n = unit vector from P, parallel to the induced velocity

at P .

t = instant at which the element of vorticity at Pt was

trailed.

t = instant at which the induced velocity at P is

calculated.
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v(x) = chordwise induced velocity distribution.

x,x, = x - components of the distances from P to the

ends of the vortex segment

x = chordwise coordinate (Section III).

Y'Y1  = y-components of distances from P.. to the ends

of the vortex segment.

z,z1 = z-components of distances from P to the ends

of the vortex segment.

P = circulation of trailing vortex (constant).

= angular velocity of rotor, radians/sec.

JiA = angles between lines from P., to the vortex segment

and the vortex segment (see Figure 23).

= angles between the tangent to the spiral and the

two half-infinite vortices (see Figure 22).

= angle between the induced velocity vector and the

perpendicular to the TPP.

= angle between the blade which trailed the element

of vorticity and the blade on which induced velocity
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is being calculated, at any instant.

I = nondimensional radial distance from rotor hub to P .

S= angle in the TPP between the local wind and the

perpendicular to the blade at point P .*

= nondimensional mean inflow.

= nondimensional n harmonics of inflow.

= advance ratio (tip speed ratio).

A) = - 5k- 5 (see Figure 14).

Aj = See Figure 16.

= azimuth angle of blade trailing the element of

vorticity at point P, at the instant of trailing

(time t1 ).

A = change in azimuth angle between the ends of a vortex

segment.

= change irk azimuth angle between the nearest point and

the other intersection of the half-infinite vortex

and the spiral (see Figure 16).
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= azimuth angle of the blade upon which P7  is located

at time t .
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I. INTRODUCTION

This report discusses various methods for computing

blade airloads which were developed for the purpose of achieving:

(a) faster solution times and (b) a more accurate representation

of the lifting surface/vortex interaction for the case where the

blade passes close to the vortex line generated by a previous

blade.

The original solution for the induced velocity in forward

flight due to the trailing wake used numerical integration down

the spiral wake (Reference 1). This method required small inter-

val sizes (typically 7.50 in azimuth) and, hence, large amounts

of computer time to get accurate results. A solution was also

developed (Reference 2) where the spiral wake is replaced by a

set of infinite straight line vortices (for which the induced

velocity is known) placed tangent to the spiral at every point

where the spiral passes under a blade during the first turn of

the spiral. This solution is 20 times as fast as the numerical

integration solution; however, it is less accurate. Attempts

were then made to develop approximate solutions which would be

faster than the numerical integration solution and more accurate

than the approximate solution outlined above. Two such attempts

are described below.

Nearest Point

Instead of replacing the spiral trailing wake by
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infinite straight lines placed wherever the spiral passed under

a blade, it was decided to locate the infinite straight lines

wherever the distance from the point at which the induced velo-

city was being calculated to the spiral was a local minimum

or maximum (nearest points). As a further refinement, a double

infinite straight line solution was developed which used two

half infinite straight line vortices, both starting at the

nearest point and proceeding in nearly opposite directions to

infinity, intersecting the spiral at points 5 0 away from

the nearest point on both sides (see Figure 1). An approximate

lifting surface theory was also developed based on the single

infinite straight line geometry. Appendix A discusses these

solutions in more detail. Since these solutions proved to be

both slower and less accurate than the finite straight line

solution discussed below, they were discarded.

Finite Straight Line (FSL)

This so~ution replaces the spiral vortex trailing

wake with a series of straight line segments (see Figure 2).

Originally, it was intended to take shorter line segments in

the vicinity of nearest points and longer segments elsewhere.

Due to the considerable amount of computer time involved in

finding all the nearest points, however, a solution using a

constant A (change in azimuth angle) per line segment proved

to be faster for equivalent accuracy.

Since FSL is approximately six times as fast as the
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numerical integration method for equivalent accuracy, it has been

adopted as the normal method of calculating induced velocities.

It is even used for distorted wake cases where the trailing wake

is not a perfect spiral (skewed helix) but some more general

shape (Reference 3). Appendix B discusses FSL in more detail.
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II. RESULTS AND CONCLUSIONS

Since the airloads on the H-34 rotor are available

from NASA Flight Test data (Reference 4), the airloads for a

test case = .2, A = .025) have been calculated using in-

duced velocities calculated by the various approximate methods

outlined above. This gives a standard against which the various

methods can be compared. The airload calculations use a two

vortex (one at the tip and one at the midspan point) constant

circulation trailing wake with the unsteady aerodynamic effects

accounted for by the appropriate lift-deficiency function

(Reference 2). Since the lower harmonics of airload can be

calculated reasonably accurately by uniform inflow methods,

the airloads have been plotted with 0th, 1st, and 2nd harmonics

extracted to emphasize the higher harmonics which uniform in-

flow methods cannot calculate accurately. Figure 3, 4, 5, and

6 show the airloads at the 95% spanpoint ( I = .95) as cal-

culated using the various approximate methods of calculating

induced velocity outlined above compared with the NASA Flight

Test data (Reference 4). For comparison the older infinite

straight line (Reference 2) and numerical integration (Reference

1) methods are shown in Figures 7 and 8(a) respectively. From

these figures, it can be seen that although the various methods

do not agree completely with each other, there is little dif-

ference as far as the ability to predict the experimental data

is concerned. The finite straight line case (Figure 6) is shown

for an interval size ( ) of 150. A case with A 7.50

has been computed which gives essentially the same results, and,
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hence, convergence to the case AO-. -O has occurred and

Figure 6 results in the correct solution. Since Figure 6 does

not show complete agreement with the test results, the two

trailing vortex, constant circulation, rigid wake model used

is inadequate, the ability of the finite straight line ap-

proximation to represent the model being better than the

ability of the model to represent the actual case. Therefore,

the model r':quires further refinement, for example, as has been

done in Reference 3 which discusses initial efforts to improve

the model by finding a better approximation to the wake geometry

than the assumption of a rigid wake.

It is, therefore, concluded that:-

1) If the two vortex, constant circulation, rigid wake

model is used, either the infinite straight line

approximation of Reference 2 (which is fastest) or

the finite straight line approximation with a large
0

interval size (A = 300 - 40 ° ) should be used since

the other methods discussed above are all slower and

yield no better agreement with the Flight Test data.

2) Future work should concentrate on developing the model

to include refinements such as a non-rigid wake geometry

and a varying strength trailing wake. For these cases

with a refined model, the finite straight line aproxi-

mation with an interval size ( ) of approxi-

mately 150 should be used.
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III. TWO DIMENSIONAL LIFTING SURFACE THEORY

When a vortex line passes close to a rotor blade, as

occurs on mostly lightly loaded rotors, the lifting line re-

presentation of the rotor blade becomes of questionable accuracy

due to the rapid variations of induced velocities over the

blade chord.

In the Appendix of Reference 1, a two-dimensional

lifting surface theory is developed. The induced velocity is

written as

ICOS A

where x = b cose is the chordwise coordinate. It is then shown

that

The A's can be calculated by calculating the induced

velocity at a number of chordwise stations (typically 7) and

doing a chordwise harmonic analysis. This process takes ap-

proximately 7 times as long as the equivalent lifting line

procedure.

It was observed that lifting surface theory results
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only differed significantly from lifting line results in the

vicinity of sharp peaks in the airloads. A program was, there-

fore, developed which normally used lifting line theory. When-

ever the value of the integrand more than doubled or halved in

one integration interval ( A ) the program shifted to lifting

surface theory and when the integrand no longer doubled or

halved in one A the program shifted back to lifting line

theory. This program was written using the method of calcu-

lating induced velocities by numerically integrating over the

wake which was developed in Reference 1.

Figure 3 shows the comparison of lifting line and

lifting surface airloads with harmonics below the third

eliminated compared with test data (Reference 4). This is for

a rigid wake, 4-blade, / = .2, = .025, and =.95 case.

There is some effect due to the lifting surface theory and a

marginal improvement in agreement with the experimental data.

It is not felt that this particular lifting surface theory is

worth pursuing further. Instead, work is proceeding on more

complete lifting surface theories (Reference 5).
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APPENDIX A

NEAREST POINT

1. Finding Nearest Points

First it is necessary to find a set of local nearest

points for a rigid wake. Consider a case where one wishes to

calculate the induced velocity at time tI and at point PI

due to vorticity trailed at time tj from the nearest point P,

Point P is at a radial distance ) R from the rotor hub on

a blade with azimuth angle $ at t , where R is the rotor

radius. Point P is at a radial distance IR from the hub

on a blade with azimuth angle 0 at tj . Let ! be the angle

between the i blade and the L blade at any instant (S = P-0

when t. =tL ). Then t -t =1 +whereJZ,

is the angular velocity of the rotor (d4 /dt). Therefore, the

distance travelled by the rotor hub in time t, - t. is dR =

V(t - t ), where V is the hub velocity. If V/QR =

advance ratio: (see Figure 9)

d =/(&+ P +~

The condition for P) to be a nearest point (or farthest point)

is that the line from P. to P,~ (of length a) be perpendiculaz

to the tangent to the spiral vortex at P . Define G as the

angle between the tangent to the spiral vortex at P1 and a line
perpendicular to the 2 blade at P . From Figure 9 it follows

that:
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sin 5= .sin - a sin ( - ( l)

Sos cos a Cos d = ('
(A.2)

To find e it is assumed that the vortex is trailed parallel to

the local velocity vector, which is composed of two components:

a velocity hJ2R perpendicular to the blade due to the rotation

of the blade and a velocity parallelto the hub motion V =,,L R

due to the hub motion.

From Figure 10 it can be seen that:

-ACos 0 A3
tan 0 - A+ I (A.3)

,P+,#sin

This set of Eqs. (A.1), (A.2), and (A.3) can be combined into

one equation:

( sin + ) - ) o / Cos

+ sin ) =0 (A.4)

which can be solved for on a digital computer by a Newton-

Raphson iteration. However, there are many solutions over the

intervals of interest (e.g., = 0 - 4r) and finding all

the solutions in such an interval takes a considerable amount of

t ime.
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Having solved Eq. (A.4) for one can now solve Eq.

(A.3) for G and the Eq. (A.1) for a.

= tan -i - sin

-Y7 sin 1 - sin
a sin (-e )

2. Single Infinite Vortex

a. Lifting Line

To calculate the downwash P the following equation from

Appendix B may be used:

_ cos 'C + cos

h

For an infinite straight line vortex c4= = 0. From

Figure 11:

2 2 2
h Z + a , P=- W cos

cosg= a/h, P= z 2a

Z 2 + a 2

Where the downwash P is, the induced velocity component perpendi-

cular to the tip path plane (TPP), and z, the nondimensional

displacement of the vortex below the TPP, is given by (for a rigid

wake):



* - * - - _ -_ --- - - - -

For the near wake case the vortex line is only half-

infinite, hence o6= 0 but/ 0. From Figure 12:

A= I/2 -3 , h= (2-7) cose

P 1 + sinG

(I- 7) cos G

Note that z = 0 here, and hence P = W.

b. Lifting Surface

In the Appendix of Reference 1, a lifting surface

theory is developed. The induced velocity is written as:

A c A
W X x0 + n Csnw= 'v(x) = oi- + e o2 - -zo

where x -b cos e is the chordwise coordinate. It is then

shown that:

+ ( ( +
L .H6 z



12

If and are neglected compared to

Aa

and then:

Noting that = then:

Also:

YTJQ Ctse±+ AR S;

Hence:

+ 1 ?es +7R sI

Figure 13 shows the type of error involved in neglecting
)AI and This figure is the result of calculating the

downwash at seven chordwise stations, performing a chordwise

harmonic analysis on the result, and using the resulting coef-

ficients to calculate L.

A is simply the average value of the downwash as a0

function of x at any and I . Thus A can be found by

integrating the downwash over the chord and dividing by the chord.
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/ f 2 Za,(x) J x

From Figure 14:

-. + X 5! nAJ

where: Aj = - - 0

Since the chord is small relative to the rate of change of z,

one can assume that z is constant over the chord. Substituting

and integrating:

OL ~ -

Noting that: A)- ) -. - -

- . ,,
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n I .,

2.z i t-o + , co

For the near wake it is assumed that the vortex originates

at the same chordwise coordinate x as the point where downwash

is calculated. From Figure 15:

Thus for the near wake case, use the far wake equation 
multiplied

by ]--5010 and with --- -)ces e
z

3. Double Infinite Vortex

For this case, the downwash (P) is calculated 
in two

j /(
pars (+alcltdP_)on fo eahvrx. From Figure 1

by - and/ wi-h a, 0+-1) CS
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From Figure 16 it can be seen that h = a cos and

+ - + + 7-= " _ 0- =_

p =
+ Co 1+ e C0S?_

For far wake P= P + P and for near wake P= P +For fr wak P = + _+
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APPENDIX B

THE INDUCED VELOCITY OF A VORTEX SEGMENT

To calculate induced velocities, use may be made at the

following relationship for a straight line vortex segment, derived

from the Biot Savart Law (Reference 6).

4-u (Coso cos)

where W* is the dimensional induced velocity at point P, ,

perpendicular to the plane determined by the vortex segment

and point PI , P is the dimensional circulation of the vortex

segment, h* is the perpendicular distance front the vortex segment

to point P )and a and? are the angles between lines drawn from

the ends of the vortex segment to point P and the vortex

segment (see Figure 17). Now define the nondimensional quan-

tities:

\her = i(Sh) on b = T
where R is the dimensional rotor radius. Therefore:

COo + CosA
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APPENDIX C

FINITE STRAIGHT LINE (FSL)

Consider calculating the induced velocity at point P1

and time t1  . Point P is on the quarter chord line and at

a spanwise distance from the rotor hub YR on the blade at az-

imuth angle at time t . To calculate the induced velocity

due to the entire wake, consider a general vortex element at

point P, , which is inducing part of the total induced velocity
atP . Let be the time at which the element of vorticity at

was trailed. Then at time tA point P( was on the quarter

chord line and at a spanwise distance from the rotor hub IR

on the blade at azimuth angle . Let the azimuth angle between

the blade on which P is located and the blade which trailed the%
elentent of vorticity at F at any instant be . Hence, in

the time from t, until t the rotor hub will move a nondimen-

sional distance d =/(k+ - ), where/=Y/J is the

advance ratio. Similarly, the vertical displacement, perpendi-

cular to the tip path plane (TPP), of point P relative to

point P at time t will be, nondimensionally, A

where "A is the nondimensional mean inflow through the rotor.

Define a right-handed axis system with origin at P.,

The y-azis and j are parallel to and in the opposite direction

from the line of rotor hub motion, and are in the TPP. The

x-axis and i are perpendicular to the y-axis and are in the TPP.

The z-axis and k are perpendicular to the TPP and point downward

(Figure 24). Let 1, j, and k be unit vectors.
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For convenient calculation the spiral wake is now

broken up into a series of straight line segments of equal

A 0 (typically 150), where AO refers to the difference in

azimuth angle between the ends of the vortex segment. P is

defined to be at the end of the vortex segment nearest P along

the spiral. Define the coordinates of the ends of a typical

vortex segment to be (x, y, z) and (xlYl, 1Z) (Figure 18). From

Figure 19 and recalling the values of z and d:

=)hCOS#-IeOS ; -l Lk~ )

where a is the coning angle.0

From Appendix B, the nondimensional. induced velocity is:

cos PC + CosA

k
Define a and b as vectors from P to the ends of the vortex segment

and c =a - b, then from Figure 18:
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Define n as the unit vector parallel to the induced velocity at

P , then from Figure 18:

The induced velocity vector is:

/

From Figure 18:

0 . = II += X, +-

Substituting and reducing results in:
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,-- +

which can easily be programmed for rapid computation on a digital

computer.

Now the W for the various segments of wake must be summed

over between some limits. The upper limit is the upper end of

the spiral vortex at time t . After several turns of the spiral

P, becomes so far away from P that it induces a negligible

velocity at P and can be neglected. A typical lower limit is

two turns of the spiral (7200 in below the upper limit. After

summing over summing- over j (for two trailing vortices

= 1.0, .5, typically) and S (for 4 blades 3= 0,W/2,V -, and

3 W /2) gives the nondimensional induced velocity at P due to a

rigid trailing wake of constant circulation.
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